Part Number Hot Search : 
3S12HZ32 RF238 160808 ATR2406 24006 C020401 LC75711N 91NJ250E
Product Description
Full Text Search
 

To Download TLWB7600 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 1 19232 e3 pb pb-free telux? led description the telux? series is a clear, non diffused led for high end applications where supreme luminous flux is required. it is designed in an industry standard 7.62 mm square package utilizing highly de veloped (as) allngap and ingan technologies. the supreme heat dissipation of telux? allows applications at high ambient temperatures. all packing units are binned for luminous flux and color to achieve best homogenous light appearance in application. features  utilizing (as) alinga p and ingan technologies  high luminous flux  supreme heat dissipation: r thjp is 90 k/w  high operating temperature: t amb = - 40 to + 110 c  type tlwr meets sae and ece color requirements  packed in tubes for automatic insertion  luminous flux and color categorized for each tube  small mechanical tolerances allow precise usage of external reflectors or lightguides  tlwr and tlwy types additionally forward volt- age categorized  esd-withstand voltage: > 2 kv acc. to mil std 883 d, method 3015.7 for alingap, > 1 kv for ingan  lead-free device applications exterior lighting dashboard illumination tail-, stop - and turn signals of motor vehicles replaces incandescent lamps traffic signals and signs parts table part color, luminous intensity angle of half intensity ( ? ) technology tlwr7600 red, v = (1500 to 3000) mlm 30 allngap on gaas tlwy7600 yellow, v = (1000 to 2400) mlm 30 allngap on gaas tlwo7600 soft orange, v = (1500 to 3000) mlm 30 allngap on gaas tlwtg7600 true green, v = (630 to 1800) mlm 30 ingan on sic tlwbg7600 blue green, v = (400 to 1250) mlm 30 ingan on sic TLWB7600 blue, v = (200 to 630) mlm 30 ingan on sic tlww7600 white, v = (200 to 630) mlm 30 ingan / tag on sic
www.vishay.com 2 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors absolute maximum ratings t amb = 25 c, unless otherwise specified tlwr7600 , tlwy7600 , tlwo7600 tlwtg7600 , tlwbg7600 , TLWB7600 , tlww7600 optical and electrical characteristics t amb = 25 c, unless otherwise specified red tlwr7600 parameter test condition symbol value unit reverse voltage i r = 10 av r 10 v dc forward current t amb 85 c i f 70 ma surge forward current t p 10 si fsm 1a power dissipation t amb 85 c p v 187 mw junction temperature t j 125 c operating temperature range t amb - 40 to + 110 c storage temperature range t stg - 55 to + 110 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w thermal resistance junction/pin r thjp 90 k/w parameter test condition part symbol value unit reverse voltage i r = 10 av r 5v dc forward current t amb 50 c i f 50 ma surge forward current t p 10 si fsm 0.1 a power dissipation t amb 50 c tlwtg7600 p v 230 mw tlwbg7600 p v 230 mw TLWB7600 p v 230 mw tlww7600 p v 255 mw junction temperature t j 100 c operating temperature range t amb - 40 to + 100 c storage temperature range t stg - 55 to + 100 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w thermal resistance junction/pin r thjp 90 k/w parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 1500 2100 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 611 618 634 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 624 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 70 ma, r thja =200 k/w v f 1.83 2.2 2.67 v
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 3 soft orange tlwo7600 yellow tlwy7600 true green tlwtg7600 reverse voltage i r = 10 av r 10 20 v junction capacitance v r = 0, f = 1 mhz c j 17 pf temperature coefficient of dom i f = 50 ma tc dom 0.05 nm/k parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 1500 2100 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 598 605 611 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 610 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 1.83 2.2 2.67 v reverse voltage i r = 10 av r 10 20 v junction capacitance v r = 0, f = 1 mhz c j 17 pf temperature coefficient of dom i f = 50 ma tc dom 0.06 nm/k parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 1000 1400 2400 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 585 592 597 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 594 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 1.83 2.1 2.67 v reverse voltage i r = 10 av r 10 15 v junction capacitance v r = 0, f = 1 mhz c j 32 pf temperature coefficient of dom i f = 50 ma tc dom 0.1 nm/k parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 630 900 1800 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 509 523 535 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 518 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.2 4.7 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k parameter test condition symbol min ty p. max unit
www.vishay.com 4 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors blue green tlwbg7600 blue TLWB7600 white tlww7600 parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 400 700 1250 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 492 505 510 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 503 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.2 4.7 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 200 330 630 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 462 470 476 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 460 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.3 4.7 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.03 nm/k parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 400 650 1250 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm color temperature i f = 50 ma, r thja = 200 k/w t k 5500 k angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.3 5.1 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 5 typical characteris tics (tamb = 25 c unless otherwise specified) figure 1. power dissipation vs. ambient temperature figure 2. forward current vs. ambient temperature figure 3. power dissipation vs. ambient temperature for ingan 0 25 50 75 100 125 150 175 200 0 20406080100120 t amb C ambient temperature ( q c ) 15982 p C power dissipation ( mw ) v r thja =200k/w red 0 20 40 60 80 100 0 20406080100120 t amb C ambient temperature ( q c ) 15983 i C forward current ( ma ) f r thja =200k/w red 0 25 50 75 100 125 150 175 200 225 250 t amb - ambient temperature ( c) 16066 p - power dissipation ( mw ) v r thja = 200 k/w 080 20 40 60 100 120 fiure 4forwardcurrentsambienttemperatureorina fiure 5forwardcurrentspuseenth fiure 6reuminousintensitsanuardispaement or60 emissionane 0 10 20 30 40 50 60 16067 i - forward current ( ma ) f t amb - ambient temperature ( c) 080 20 40 60 100 120 r thja = 200 k/w 0 . 01 0 . 11 10 1 10 100 1000 10000 t p C pu l se l en g th(ms) 100 16010 i C forward current ( ma ) f t p /t=0 . 01 0 . 02 0 . 05 0 . 1 0 . 2 1 0 . 5 t amb 85 c red ,s o f toran g e , y e ll ow 16006 0 . 40 . 200 . 20 . 4 0 . 6 0 . 6 0 . 9 0 30 10 20 40 50 60 70 80 1 . 0 0 . 8 0 . 7 i C re l ati v e l uminous intensit y v re l
www.vishay.com 6 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors figure 7. percentage total luminous flux vs. total included angle for 60 emission angle figure 8. thermal resistance junction ambient vs. cathode padsize figure 9. forward current vs. forward voltage 0 10 20 30 40 50 60 70 80 90 100 0 25 50 75 100 125 tota l in cl uded an gl e (de g rees) 16005 % tota ll uminous f l u x r in k/w 160 170 180 190 200 210 220 230 0 50 100 150 200 250 300 cathode padsi z einmm 2 16009 thja padsi z e8mm 2 per anode pin 0 10 20 30 40 50 60 70 80 90 100 1 . 51 . 61 . 71 . 81 . 92 . 02 . 12 . 22 . 32 . 42 . 5 v f C forward vo l ta g e(v) 15974 f i Cf orward current ( ma ) red y e ll ow fiure 10reuminousfu sambienttemperature fiure 11peiiuminous fusforwardcurrent fiure 12reatieuminousfusforwardcurrent 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 - 40 - 20 0 20 40 60 80 100 t amb C ambient temperature ( c) 15976 i f =70ma red , s o f toran g e vre l C re l ati v e l uminous f l u x 0 . 1 1 . 0 1 10 100 i f - forward current ( ma ) 15980 i -s pe c i f i cl uninous f l u x s pe c red , s o f toran g e 0 . 01 0 . 1 1 10 1 10 100 i f - forward current ( ma ) 15978 i - re l ati v e l uminous intensit y vre l red
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 7 figure 13. relative intensity vs. wavelength figure 14. relative intensity vs. wavelength figure 15. dominant wavelength vs. forward current 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 570 580 590 600 610 620 630 640 650 660 670 - wa v e l en g th(nm) 16007 i - re l ati v e l uminous intensit y vre l red 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 560 570 580 590 600 610 620 630 640 650 660 16314 s o f t oran g e i - re l ati v e l uminous intensit y vre l - wa v e l en g th(nm) 16434 616 . 0 616 . 5 617 . 0 617 . 5 618 . 0 618 . 5 619 . 0 red dominant wa v e l en g th ( nm ) 70 60 50 40 30 20 10 0 i f - forward current ( ma ) figure 16. dominant wavelength vs. forward current figure 17. forward current vs. forward voltage figure 18. rel. luminous flux vs. ambient temperature 16436 603 . 0 603 . 5 604 . 0 604 . 5 605 . 0 s o f toran g e dominant wa v e l en g th ( nm ) 70 60 50 40 30 20 10 0 i f - forward current ( ma ) 0 10 20 30 40 50 60 70 80 90 100 1 . 41 . 51 . 61 . 71 . 81 . 92 . 02 . 12 . 22 . 32 . 4 v f C forward vo l ta g e(v) 15975 f i - forward current ( ma ) y e ll ow 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 - 40 - 20 0 20 40 60 80 100 15977 i f =70ma y e ll ow vre l C re l ati v e l uminous f l u x t amb C ambient temperature ( c)
www.vishay.com 8 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors figure 19. specific luminous flux vs. forward current figure 20. relative luminous flux vs. forward current figure 21. relative intensity vs. wavelength 0 . 1 1 . 0 1 10 100 i f - forward current ( ma ) 15981 y e ll ow i -s pe c i f i cl uninous f l u x s pe c vre l 0 . 01 0 . 1 1 10 1 10 100 i f - forward current ( ma ) 15979 y e ll ow i - re l ati v e l uminous intensit y 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 540 550 560 570 580 590 600 610 620 630 640 - wa v e l en g th(nm) 16008 i - re l ati v e l uminous intensit y vre l y e ll ow figure 22. dominant wavelength vs. forward current figure 23. forward current vs. forward voltage figure 24. rel. luminous flux vs. ambient temperature 16435 590 . 0 590 . 5 591 . 0 591 . 5 592 . 0 y e ll ow dominant wa v e l en g th (nm) 70 60 50 40 30 20 10 0 i f - forward current ( ma ) 0 10 20 30 40 50 60 70 80 90 100 2 . 53 . 03 . 54 . 04 . 55 . 05 . 5 v f - forward curren t(v) 16037 true g reen i f - forward current ( ma ) 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 16056 i f =50ma true g reen vre l C re l ati v e l uminous f l u x t amb C ambient temperature ( c) - 40 - 20 0 20 40 60 80 100
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 9 figure 25. specific luminous flux vs. forward current figure 26. relative luminous flux vs. forward current figure 27. relative intensity vs. wavelength 0 . 1 1 . 0 1 10 100 i f - forward current ( ma ) 16038 i -s pe c i f i cl uminous f l u x s pe c true g reen 0 . 01 0 . 10 1 . 00 10 . 00 1 10 100 i f - forward current ( ma ) 16039 true g reen vre l i - re l ati v e l uminous intensit y 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 460 480 500 520 540 560 580 600 620 - wa v e l en g th(nm) 16068 i - re l ati v e l uminous intensit y vre l true g reen figure 28. dominant wavelength vs. forward current figure 29. forward current vs. forward voltage figure 30. rel. luminous flux vs. ambient temperature 521 523 525 527 529 531 533 535 537 539 541 i f - forward current ( ma ) 16301 dominant wa v e l en g th (nm) true g reen 01020304050 0 10 20 30 40 50 60 70 80 90 100 2 . 53 . 03 . 54 . 04 . 55 . 05 . 5 v f - forward vo l ta g e(v) 16058 f i - forward current ( ma ) bl ue g reen 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 - 40 - 20 0 20 40 60 80 100 16061 i f =50ma bl ue g reen vre l - re l ati v e l uminous f l u x t amb ? ambient temperature ( c)
www.vishay.com 10 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors figure 31. specific luminous flux vs. forward current figure 32. relative luminous flux vs. forward current figure 33. relative intensity vs. wavelength 0 . 1 1 . 0 1 10 100 16059 bl ue g reen i -s pe c i f i cl uninous f l u x s pe c i f - forward current ( ma ) 0 . 01 0 . 10 1 . 00 10 . 00 1 10 100 16060 bl ue g reen i f - forward current ( ma ) i - re l ati v e l uminous f l u x vre l 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 420 440 460 480 500 520 540 560 580 600 16070 i f =50ma bl ue g reen i - re l ati v e l uminous intensit y vre l - wa v e l en g th(nm) fiure 34dominantwaeenthsforwardcurrent fiure 35forwardcurrentsforwardvotae fiure 36reuminousfu sambienttemperature 502 503 504 505 506 507 508 509 510 511 16300 bl ue g reen dominant wa v e l en g th ( nm ) 50 40 30 20 10 0 i f - forward current ( ma ) 0 10 20 30 40 50 60 70 80 90 100 2 . 53 . 03 . 54 . 04 . 55 . 05 . 5 v f - forward vo l ta g e(v) 16040 bl ue true g reen i - forward current ( ma ) f 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 16057 i f =50ma bl ue vre l - re l ati v e l uminous f l u x t amb - ambient temperature ( c) - 40 - 20 0 20 40 60 80 100
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 11 figure 37. specific luminous flux vs. forward current figure 38. relative luminous flux vs. forward current figure 39. relative intensity vs. wavelength 0 . 1 1 . 0 1 10 100 i f - forward current ( ma ) 16041 bl ue i -s pe c i f i cl uninous f l u x s pe c 0 . 01 0 . 10 1 . 00 10 . 00 1 10 100 i f - forward current ( ma ) 16042 bl ue vre l i - re l ati v e l uminous intensit y 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 400 420 440 460 480 500 520 540 560 - wa v e l en g th(nm) 16069 i - re l ati v e l uminous intensit y vre l bl ue figure 40. dominant wavelength vs. forward current figure 41. forward current vs. forward voltage figure 42. rel. luminous flux vs. ambient temperature 16299 469 470 471 472 473 bl ue dominant wa v e l en g th (nm) 50 40 30 20 10 0 i f - forward current ( ma ) 0 10 20 30 40 50 60 70 80 90 100 2 . 53 . 03 . 54 . 04 . 55 . 05 . 5 v f - forward vo l ta g e (v) 16062 white i - forward current ( ma ) f 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 - 40 - 20 0 20 40 60 80 100 16065 i f =50ma white vre l - re l ati v e l uminous f l u x t amb - ambient temperature ( c)
www.vishay.com 12 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors figure 43. specific luminous flux vs. forward current figure 44. relative luminous flux vs. forward current figure 45. relative intensity vs. wavelength 0 . 1 1 . 0 1 10 100 i f - forward current ( ma ) 16063 i -s pe c i f i cl uminous f l u x s pe c white 0 . 01 0 . 10 1 . 00 10 . 00 1 10 100 16064 i - re l ati v e l uminous f l u x vre l white i f - forward current ( ma ) 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 400 450 500 550 600 650 700 750 800 - wa v e l en g th ( nm ) 16071 i f =50ma white i - re l ati v e l uminous intensit y vre l 0 . 315 0 . 320 0 . 325 0 . 330 0 . 335 0 . 340 0 . 345 16198 f- chromati c it yc oordinate shi f t( x,y ) x y i f - forward current ( ma ) white 060 50 40 30 20 10
vishay tlwb / bg / o / r / tg / w / y7600 document number 83138 rev. 2.2, 14-jan-05 vishay semiconductors www.vishay.com 13 package dimensions in mm 16004
www.vishay.com 14 document number 83138 rev. 2.2, 14-jan-05 vishay tlwb / bg / o / r / tg / w / y7600 vishay semiconductors ozone depleting substances policy statement it is the policy of vishay semiconductor gmbh to 1. meet all present and future national and international statutory requirements. 2. regularly and continuously improve the performan ce of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. it is particular concern to control or eliminate rele ases of those substances in to the atmosphere which are known as ozone depleting substances (odss). the montreal protocol (1987) and its london amendments (1990) intend to severely restrict the use of odss and forbid their use within the next ten years. various national and international initiatives are pressing for an earlier ban on these substances. vishay semiconductor gmbh has been able to use its po licy of continuous improvements to eliminate the use of odss listed in the following documents. 1. annex a, b and list of transitional substances of the montreal protocol and the london amendments respectively 2. class i and ii ozone depleting substances in the clean air act amendments of 1990 by the environmental protection agency (epa) in the usa 3. council decision 88/540/eec and 91/690/eec annex a, b and c (transitional substances) respectively. vishay semiconductor gmbh can certify that our semi conductors are not manufactured with ozone depleting substances and do not co ntain such substances. we reserve the right to make changes to improve technical design and may do so without further notice. parameters can vary in different applications. all operating parameters must be validated for each customer application by the customer. should the buy er use vishay semiconductors products for any unintended or unauthorized application, the buyer sh all indemnify vishay semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. vishay semiconductor gmbh, p.o.b. 3535, d-74025 heilbronn, germany telephone: 49 (0)7131 67 2831, fax number: 49 (0)7131 67 2423


▲Up To Search▲   

 
Price & Availability of TLWB7600

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X